

Stochastic Activation Pruning for Robust Adversarial Defense

Guneet S. Dhillon 1,3 , Kamyar Azizzadenesheli 4 , Aran Khanna 1 , Jeremy Bernstein 1,2 Jean Kossaifi 1,5 , Zachary C. Lipton 1,6 , Anima Anandkumar 1,2

 1 Amazon AI, 2 Caltech, 3 UT Austin, 4 UC Irvine, 5 Imperial College London, 6 Carnegie Mellon University

Adversarial Examples

Neural network: hInput: x

Parameters: θ True output: y

Adversary's objective:

 $\Delta x = \arg \max_{r \sim o} J(\theta, x + r, y)$

where perturbations are **bounded by** l_{∞} -norm.

Using the Taylor expansion up to the first order term,

$$\Delta x = \arg \max_{r \sim \rho} [J(\theta, x, y) + r^{\top} \mathcal{J}(\theta, x, y)] \quad \text{where } \mathcal{J} = \frac{\partial J}{\partial x}$$

$$\Longrightarrow \Delta x = \arg \max_{r \sim \rho} r^{\top} \mathcal{J}(\theta, x, y)$$

The adversary chooses r to be in the direction of $\mathcal{J}(\theta, x, y)$.

So the adversary can choose $\Delta x = \lambda \text{sign}(\mathcal{J}(\theta, x, y))$ (the **fast gradient sign method**).

Minimax Zero-sum Game

Adversary-defender problem (game-theoretic perspective):

$$\pi^*$$
, $\rho^* := \arg\min_{n \sim \pi} \max_{r \sim \rho} \mathbb{E}_{\pi,\rho} \left[J(M_p(\theta), x + r, y) \right]$

where

- adversary tries to maximize the loss by perturbing the input under policy ρ .
- defender tries to minimize the loss by changing model parameters under policy π .

The optimization problem is a **minimax zero-sum game** between the adversary and defender.

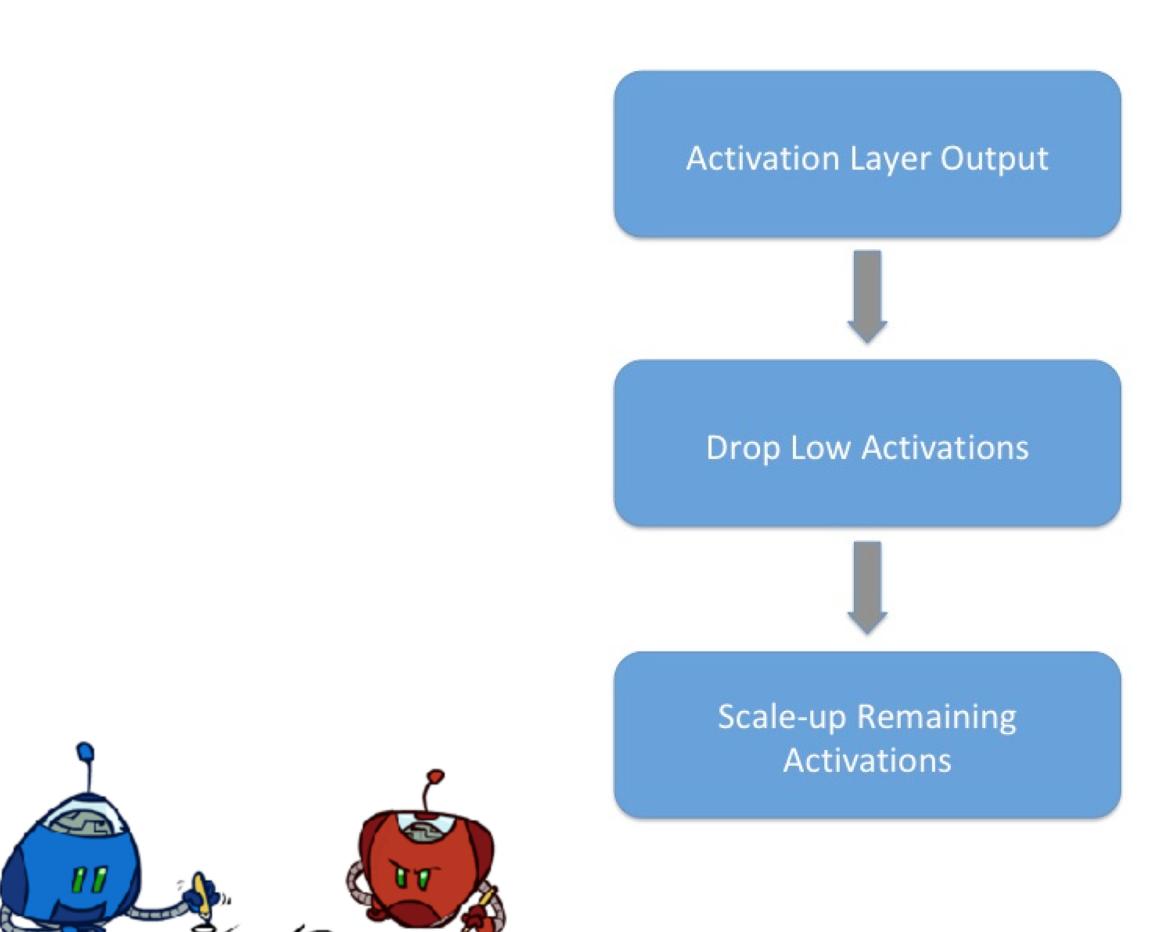
Optimal strategies (π^*, ρ^*) , in general, are mixed Nash equilibrium, i.e. **stochastic policies**.

Stochastic Activation Pruning (SAP)

Intuitive idea: stochastically drop out nodes in each layer during forward propagation.

- Retain nodes with probabilities proportional to the magnitude of their activation.
- Scale up the surviving nodes to preserve the dynamic range of the activations in each layer.
- Preserves the accuracy of the original model.
- Better accuracy and calibration on perturbed input data.
- Can be applied post-hoc to already-trained models.

Stochastic Activation Pruning on each Activation Layer



Stochastic Activation Pruning on Pre-Trained Models

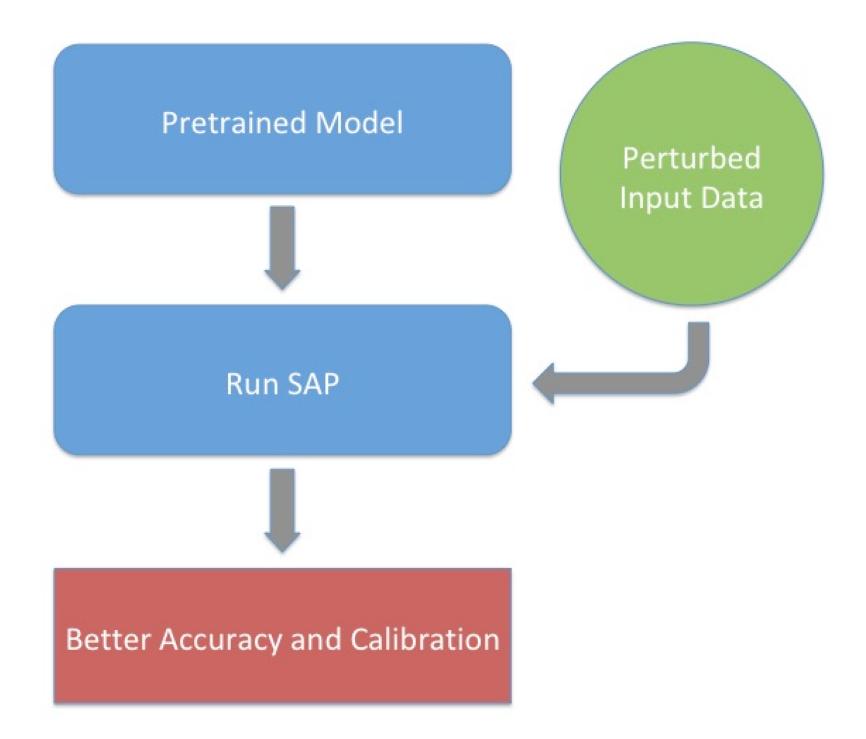
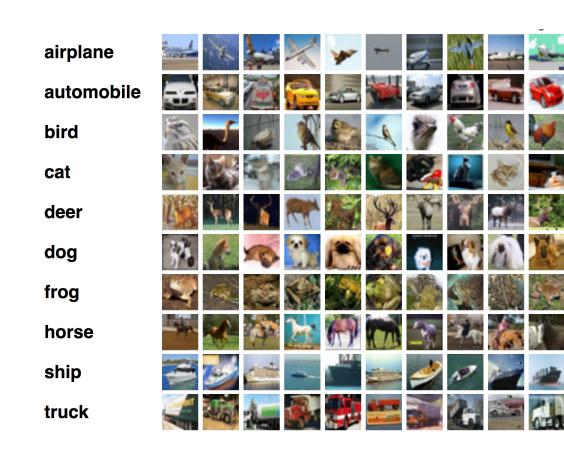


Image Classification



Reinforcement Learning

Dataset: Cifar-10 Model: ResNet-20 Non-linearity: ReLU Loss function: Cross-entropy Accuracy- λ plots for SAP models. The legend indicates percentage of samples drawn. Application of samples drawn. Accuracy- λ plots for dense, SAP-100 models.

Reinforcement Learning

Games: Multiple Atari games Model: Double DQN

Percentage relative increase in rewards gained for SAP-100 compared to original model while playing different Atari games.

0 -12.2 -33.4 -59.2 -65.8 -15.8 -4.5 1 10.4 13.3 131.7 -22.0 164.5 3425.9 2 9.8 20.8 204.8 110.1 92.3 4 12.4 14.0 1760.0 202.6 8 16.6 7.4 60.9 134.8	λ	Assault	Asterix	${\bf Bank He ist}$	${\bf Battle Zone}$	${\bf BeamRider}$	Bowling
2 9.8 20.8 204.8 110.1 92.3 4 12.4 14.0 1760.0 202.6	0	-12.2	-33.4	-59.2	-65.8	-15.8	-4.5
4 12.4 14.0 1760.0 202.6	1	10.4	13.3	131.7	-22.0	164.5	3425.9
	2	9.8	20.8	204.8	110.1	92.3	
8 16.6 7.4 60.9 134.8	4	12.4	14.0	1760.0	202.6		
	8	16.6	7.4	60.9	134.8		

Discussion

- Results in improvements in the robustness of pre-trained models.
- Does not require any additional training.
- In the image classification domain, both the accuracy and calibration of the model improved.
- Can be combined with adversarial training, to compound the benefits.
- In the reinforcement learning domain, is able to defend against adversarial examples better than original model.