

Elmore Family School of Electrical and Computer Engineering

Structured and Resource-Constrained Collaborative Learning

Abolfazl Hashemi

ML Seminar, Purdue University

September 22, 2021

The Era of Collaborative Systems

Satellite mesh network

Smart grids

Creating reliable and effective collaborative systems that are highly secure, robust and economically viable

Collaborative Systems: Large-Scale and Heterogenous

How can we enable scalable deployment of collaborative learning in presence of heterogeneity?

Collaborative Systems: Embodied Agents

How can we design low-cost and energy-efficient collaborative learning systems capable of operating in rapidly evolving environments?

Collaborative Systems: Limited Communication Budget

Unreliable communication

Limited bandwidth

How can we design robust and communication-efficient collaborative learning systems?

Communication-Efficient Federated and Distributed Learning

Local data

Contributions:

- Model aggregation and communication strategies for distributed learning
- Developing communication-efficient algorithms with provable guarantees

Efficient Observation Selection and Information Gathering

• Task-aware observation selection criteria for sensing networks

• Developing efficient feature selection algorithms with near-optimal utilities

Contributions:

Data-Scarce Parsimonious Representation Learning

Contributions:

- Representation learning for unsupervised inference from structured data
- Sparse approximation algorithms for function approximation and regression

Communication-Efficient Federated and Distributed Learning

[Das, R., Hashemi, A., Acharya, A., Sanghavi, S., Dhillon, I., Topcu, U., "Faster Non-Convex Federated Learning via Global and Local Momentum," Submitted, 2021.]

[Chen, Y., Hashemi, A., Vikalo, H., "Communication-Efficient Variance-Reduced Decentralized Stochastic Optimization over Time-Varying Directed Graphs," Submitted, 2021.]

[Hashemi, A., Acharya, A., Das, R., Vikalo, H., Sanghavi, S., Dhillon, I., "On the Benefits of Multiple Gossip Steps in Communication-Constrained Decentralized Optimization," Submitted, 2021.]

[Chen, Y., Hashemi, A., Vikalo, H., "Decentralized Optimization on Time-Varying Directed Graphs under Communication Constraints," International Conference on Acoustic, Speech and Signal Processing (ICASSP), 2021.]

Collaborative Learning in Connected Systems

Expensive Communication

Systems Heterogeneity

Statistical Heterogeneity

Li et al., 2019

Communication-Efficient Federated Learning

$$m{w}^{(1)},m{w}^{(2)},\dots,m{w}^{(100)}$$

Intermittent high-speed downlink to available vehicles

Intermittent slow uplink from available vehicles $m{w}^{(1)},m{w}^{(2)},\dots,m{w}^{(10)}$

 $w = agg(w^{(1)}, w^{(2)}, \dots, w^{(10)})$

Global aggregation

How to find an effective local update?

How to send compressed, informative messages? How to aggregate in the presence of heterogeneity?

Network structure (availability and heterogeneity)

Network Structure and Heterogeneity

Periodic message-passing: devices communicate with the server intermittently

Partial participation: only *r* out of *n* devices available each communication round $(r \ll n)$

$$\|\widetilde{\nabla}f_i(\boldsymbol{w}; \mathcal{B}) - \nabla f_i(\boldsymbol{w})\| \leq \sigma_b$$

Stochastic gradient
approximation error
Bounded
dissimilarity
$$\|\nabla f_i(\boldsymbol{w}) - \nabla f(\boldsymbol{w})\|^2 \leq \sigma_r^2$$

Local functions
Global function

Components of the Problem

Network structure (availability and heterogeneity)

Stochastic Gradient Descent (SGD)

Search for a point where the gradient is small

 $\|\nabla f(\boldsymbol{w})\|^2 \leq \epsilon$

Stochastic first-order update

 $\boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \eta \widetilde{\nabla} f_i(\boldsymbol{w}_t; \mathcal{B}_t)$

What do we know about the performance of SGD?

<u>Theorem</u> (Convergence of SGD) $T = \mathcal{O}\left(\frac{\sigma_b^2}{\epsilon^2} + \frac{1}{\epsilon}\right)$

Theorem (Lower bounds)
$$T = \mathcal{O}\left(\frac{1}{\epsilon^{1.5}}\right)$$

Local Momentum-Based Variance Reduction

Iterations

SGD

Global Momentum-Based Variance Reduction

Simple aggregation: $oldsymbol{w} \leftarrow rac{1}{r} \sum_{i \in \mathcal{S}} oldsymbol{w}_E^{(i)}$

$$oldsymbol{w} \leftarrow oldsymbol{w} - rac{\eta}{r} \sum_{i \in \mathcal{S}_k} rac{oldsymbol{w} - oldsymbol{w}_E^{(i)}}{\eta}$$

A generalized stochastic gradient

Similar issue, but now because of heterogeneity

Iterations

Using momentum-based variance reduction for model parameters

Theorem (optimal rate)
To get
$$\mathbb{E} \| \nabla f(\boldsymbol{w}_K) \|^2 \leq \epsilon$$
 we need
 $K = \mathcal{O} \left(\frac{1}{\epsilon^{1.5}} \right)$
Hashemi et al., 2021

Components of the Problem

Network structure (availability and heterogeneity)

Quantized Uplink Communication

Local and Global Momentum-Based Variance Reduction

Local momentum-based variance reduction

$$\boldsymbol{v}_{\tau}^{(i)} = \widetilde{\nabla} f_i(\boldsymbol{w}_{\tau}^{(i)}; \mathcal{B}_{\tau}^{(i)}) + \left(\boldsymbol{v}_{\tau-1}^{(i)} - \widetilde{\nabla} f_i(\boldsymbol{w}_{\tau-1}^{(i)}; \mathcal{B}_{\tau}^{(i)})\right)$$
$$\boldsymbol{w}_{\tau+1}^{(i)} = \boldsymbol{w}_t^{(i)} - \eta \boldsymbol{v}_{\tau}^{(i)}$$

Global momentum-based variance reduction

$$\boldsymbol{w}_{k+1} = \operatorname{agg}(\{Q_D(\boldsymbol{w}_k - \boldsymbol{w}_{k,E}^{(i)})\})$$

$$Q_D(oldsymbol{w}_k - oldsymbol{w}_{k,E}^{(i)})$$

Collaborative Learning of Multiclass Classifiers

10 classes, 50,000 images

n = 50 collaborative learners

Communication protocol: 50% dropout rate (*r*=25)

Communication every 10 rounds (Intermittency)

Heterogenous case:2% of data available locally, from at most two classes

Homogenous case:2% of data available locally, i.i.d. among the devices

Efficacy of Quantization and Momentum Mechanisms

Robustness to Unreliable Communication

Resiliency to device dropout (smaller *r*)

Robustness to Unreliable Communication

Abolfazl Hashemi

Information Management in Resource-Constrained Sensing Networks

[Hashemi, A., Vikalo, H., de Veciana, G., "Progressive Stochastic Greedy Sparse Reconstruction and Support Selection," Submitted, 2021.]

[Hashemi, A., Ghasemi, M., Vikalo, H., Topcu, U., "Randomized greedy sensor selection: Leveraging weak submodularity," IEEE Transactions on Automatic Control, Jan. 2021.]

[Hashemi, A., Vikalo, H., de Veciana, G., "On the Performance-Complexity Tradeoff in Stochastic Greedy Weak Submodular Optimization," International Conference on Acoustic, Speech and Signal Processing (ICASSP), 2021.]

[Hashemi, A., Ghasemi, M., Vikalo, H., Topcu, U., "Submodular Observation Selection and Information Gathering for Quadratic Models," International Conference on Machine Learning (ICML), Long Beach, CA, June 2019.]

Observation Selection for Sensing Networks

Questions

- What should be be the selection criteria?
- How can we perform the selection efficiently and with guaranteed performance?

Observation Selection Criteria

Scalar functions of the predicted error covariance matrix $f(P_t(S))$

Observation Selection in Large-Scale Networks

Tight approximation guarantee

Greedy selection

Prohibitive computational cost

Reduce the space of greedy by random sampling

Theorem

An increasing schedule is required to ensure the intersection is nonempty

Theorem Near-optimal expected approximation guarantee

 $\mathbb{E}[f(\hat{S})] \ge \left(1 - e^{-\alpha} - \alpha \epsilon\right) f(S^{\star})$

UAV-Based Target Tracking

Application in Autonomous Driving

Data-Scarce Parsimonious Representation Learning

[Hashemi, A., Schaeffer, H., Shi, B., Tran, G., Ward, R., "Generalization Bounds for Sparse Random Features Expansions", 2021.]

[Hashemi, A., Zhu, B., Vikalo, H., "Sparse Tensor Decomposition for Haplotype Assembly of Diploids and Polyploids," BMC Genomics, Mar. 2018.]

[Hashemi, A. and Vikalo, H., "Evolutionary Self-Expressive Models for Subspace Clustering," IEEE Journal of Selected Topics in Signal Processing, Dec. 2018.]

[Hashemi, A. and Vikalo, H., "Accelerated Orthogonal Least-Squares for Large-Scale Sparse Reconstruction," Digital Signal Processing, Nov. 2018.]

Structured Function Approximation

<u>Goal</u>

• Learning structured unknown functions from limited measurements

$$\min_{\theta} \sum_{i=1}^{m} \operatorname{dist}(y_i, f(x_i; \theta)) \quad s.t. \quad f(x; \theta) \in \mathcal{F}$$

Parsimonious Representation Learning

<u>Theorem</u>

Bound on amount of required data for a target accuracy

Empirical Applications in Unsupervised Learning

Real-time
motion segmentationImage: segmentatio

Method	Error (%)	Runtime (s)
Proposed	5.60	1.69
Baseline	10.76	46.16

Abolfazl Hashemi

Ongoing and Future Work

Collaborative Learning in Dynamic Environments

Adaptive representation learning of dynamic data

Resource-constrained collaborative learning under uncertainty and dynamic heterogeneity

[Ghasemi, M., Hashemi, A., Vikalo, H., Topcu, U., "No-Regret Learning with High-Probability in Adversarial Markov Decision Processes," Conference on Uncertainty in Artificial Intelligence (UAI), 2021]

[Ghasemi, M., **Hashemi, A.,** Topcu, U., Vikalo, H., "Online Learning with Implicit Exploration in Episodic Markov Decision Processes," American Control Conference (ACC), 2021]

Robustness and Security

Collaboration against unexpected contingencies and adversaries

Integrating robust hypothesis testing into information acquisition and representation learning

Exploring the trade-off between privacy and robustness

Update: Chrysler recalls 1.4M vehicles after Jeep hack CYBEF ATTACKS AHEAD goal Privacy todav Robustness

[Acharya, A., Hashemi, A., Jain, P., Sanghavi, S., Dhillon, I., Topcu, U., "Robust Training in High Dimensions via Block Coordinate Geometric Median Descent," Preprint, 2021]

[Das, R., Hashemi, A., Sanghavi, S., Dhillon, I., "DP-NormFedAvg: Normalizing Client Updates for Privacy-Preserving Federated Learning," Preprint, 2021]

Structured and Resource-Constrained Collaborative Learning

Abolfazl Hashemi

Local momentum-based
variance reductionGlobal momentum-based
variance reduction $v_{\tau}^{(i)} = \tilde{\nabla}f_i(w_{\tau}^{(i)}; \mathcal{B}_{\tau}^{(i)}) + (v_{\tau-1}^{(i)} - \tilde{\nabla}f_i(w_{\tau-1}^{(i)}; \mathcal{B}_{\tau}^{(i)}))$
 $w_{\tau+1}^{(i)} = w_t^{(i)} - \eta v_{\tau}^{(i)}$ $w_{k+1} = agg(\{Q_D(w_k - w_{k,E}^{(i)})\})$ $\widetilde{V}_{\tau+1} = w_t^{(i)} - \eta v_{\tau}^{(i)}$ \widetilde{V}_{k+1} $w_{k+1} = agg(\{Q_D(w_k - w_{k,E}^{(i)})\})$ $\widetilde{V}_{\tau+1} = w_t^{(i)} - \eta v_{\tau}^{(i)}$ \widetilde{V}_{k-1} \widetilde{V}_{k-1} $\widetilde{V}_{t-1} = u_{t-1}^{(i)} - \eta v_{\tau}^{(i)}$ \widetilde{V}_{k-1} \widetilde{V}_{k-1} $\widetilde{V}_{t-1} = u_{t-1}^{(i)} - \eta v_{\tau}^{(i)}$ \widetilde{V}_{k-1} \widetilde{V}_{k-1} $\widetilde{V}_{t-1} = u_{t-1}^{(i)} - \eta v_{\tau}^{(i)}$ \widetilde{V}_{k-1} $\widetilde{V}_{k-1}^{(i)} - \eta v_{t-1}^{(i)}$ $\widetilde{V}_{t-1} = u_{t-1}^{(i)} - \eta v_{t-1}^{(i)}$ $\widetilde{V}_{k-1}^{(i)} - \eta v_{t-1}^{(i)}$ $\widetilde{V}_{k-1}^{(i)} - \eta v_{t-1}^{(i)}$ $\widetilde{V}_{t-1} = u_{t-1}^{(i)} - \eta v_{t-1}^{(i)} - \eta v_{t-1}^{(i)}$ $\widetilde{V}_{t-1}^{(i)} - \eta v_{t-1}^{(i)}$ $\widetilde{V}_{t-1}^{(i)} - \eta v_{t-1}^{(i)}$ $\widetilde{V}_{t-1} = u_{t-1}^{(i)} - \eta v_{t-1}^{(i)} - \eta v_{t-1}^{(i)}$ $\widetilde{V}_{t-1}^{(i)} - \eta v_{t-1}^{(i)}$ $\widetilde{V}_{t-1}^{(i)} - \eta v_{t-1}^{(i)}$ $\widetilde{V}_{t-1} = u_{t-1}^{(i)} - \eta v_{t-1}^{(i)} - \eta v_{t-1}^{(i)}$ $\widetilde{V}_{t-1}^{(i)} - \eta v_{t-1}^{(i)}$ $\widetilde{V}_{t-1}^{(i)} - \eta v_{t-1}^{(i)}$ $\widetilde{V}_{t-1} = u_{t-1}^{(i)} - \eta v_{t-1}^{(i)} - \eta v_{t-1}^{(i)} - \eta v_{t-1}^{(i)}$ $\widetilde{V}_{t-1}^{(i)} - \eta v_{t-1}^{(i)} - \eta v_{t-1}^{(i)}$ $\widetilde{V}_{t-1} = u_{t-1}^{(i)} - \eta v_{t-1}^{(i)} - \eta v_$

