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Reinforcement Learning

Learn to interact with an unknown environment through trial and 
error

Unknown 
environment

Action: 𝑎!, 𝑎", … , 𝑎#

State observations: 𝑠!, 𝑠", … , 𝑠#
Rewards: 𝑟!, 𝑟", … , 𝑟#

Agent

Goal: maximize cumulative reward for a horizon 𝐻

Long term effect needs to be considered. 

Value: E[𝑟& + 𝑟' + 𝑟( +⋯𝑟)]



Reinforcement Learning

𝑠$

𝑎! ← move 1
𝑟! ← 0

𝑎", 𝑎#, …
𝑟", 𝑟#… ← 0

𝑎$!, 𝑎$", …
𝑟$!, 𝑟$"… ← 0

𝑠! 𝑠%& 𝑠""'

Wining: 𝑟##% ← 1

Losing: 𝑟##% ← 0

Actions?

States?

Rewards?

OpenAI Arm



Markov Decision Process (MDP)

• Environment is unknown
• States:   ;  actions:
• Reward:
• Unknown state transition: 𝑃!(⋅ |𝑠, 𝑎)
• Horizon: H (a large number)
• Goal: optimal policy 𝜋∗: 𝑆 → Δ#

max
*

E 𝑟& 𝑠&, 𝜋 𝑠& + 𝑟' 𝑠', 𝜋 𝑠' +⋯𝑟) 𝑠), 𝜋 𝑠' =:𝑄*

𝑠( ∼ 𝑃(⋅ |𝑠()!, 𝜋(𝑠()!))



Theories of RL on MDP
• Exploration + exploitation [Kearns & Singh 2002, Jaksch et al. 2010]

• Learn from scratch
• Exploitation: optimize policy based on existing data
• Exploration: collect new info about the environment

• Regret: average error v.s. optimal policy

• Focus has been on Tabular RL
• Does not scale in practical problem
• Provides sanity check for exploration algorithm
• In deep RL, the default is 𝜖-greedy exploration

Play current policy 𝜋*

Improve policy to 𝜋*+!

Data: [history 
trajectories]

exploration

exploitation



Does tabular algorithm work in practice?

• Number of episodes required to get a good 𝜋

• Curse of Dimensionality

S
|S| = 3,'! |S| ≥ 256"-'×"/$

!Θ 𝑆 𝐴 poly 𝐻
[Jin et al’2018] [Azar et al’ 2017][…]



Function Approximation in Practice

• DQN

[Mnih et al’ 2015]

Limitations? Huge number of training samples. Hard to understand. No theoretical guarantee.



RL Theory v.s. Practice

• Theory
• Markov decision process

• Finite state space 𝑆
• Finite action space 𝐴
• Finite horizon 𝐻

• Many theoretical results
• Mostly tabular – well understood
• Not scalable

• Practice
• Infinite state space
• Function approximation via 

Deep Neural Networks

• Many empirical results
• Little understanding
• No guarantee



Function Approximation

• Generalization ability
• Infer values/policies for unseen (𝑠, 𝑎)

• Find a function class to approximate 𝑄∗ s,a or 𝜋∗

(s,a)
Q*(s,a)

𝜋*(s,a)



Linear Function Approximation

• Need correct features
• Features are given: 𝜙 𝑠, 𝑎 → 𝑅$

• Bad features requires exponential time/sample to learn 
[Du-Kakade-Wang-Yang’ 20] [Van Roy & Dong’ 20] [Lattimore et al’ 20] [Weisz et al’ 20]

• Good features
• Linear MDP [Yang & Wang’ 19]: 

efficient algorithm: [Jin et al’ 20]
• Low-bellman error [Zanette et al’ 20]
• Low-bellman rank [Jiang et al’ 17]

, (Action Left)𝜙 3 question marks, 1 enemies, 4 bushes, 1 chimney, …

Time 
efficient



General function approximation
• No features are given

• Function class ℱ
• Might be parametric
• 𝑓 𝑠, 𝑎 may rep. 𝑄∗(𝑠, 𝑎)

• Used in practice

Goals for RL:

• Efficient algorithms with practical potentials

• Theoretical guarantees for special cases

[Silver et al 2016]



Strategies for Exploration

• Optimism in the face of uncertainty:
• Upper Confidence Bound (UCB)

• Thompson Sampling
• One of the oldest heuristics for balancing exploration

exploitation trade-off. (Thompson, 1933)
• Randomly select an action according to the probability

of it being the optimal action. 
• PSRL = Thompson Sampling for MDPs. (Strens 2000)
• Sample MDP from posterior, apply policy for an entire episode.



Randomized value functions

• Key idea: generate approximate posterior samples
• Use standard value learning algorithms (LSVI, DQN, …)
• Fit to randomly perturbed data

• Theory for tabular representation + LSVI:
• Worst-case regret bound for Gaussian noise (Russo 2019)

𝑅𝑒𝑔𝑟𝑒𝑡 𝑇 ≤ <𝑂(𝐻 𝑆(𝐴𝑇)

• . Computational results with generalization
• Parameterized representation for Q(s,a)
• Scalable unlike UCB based methods or posterior sampling
• Approximate posterior inference is good enough for efficient exploration.



Current limitations

• No theoretical result for RVF with general function approximation
• Limited to empirical results only (Bootstrapped DQN, Ensemble 

sampling)

• Lack of unification between OFU and Thompson Sampling 
• Can we combine both principle for algorithm design?

• Bypassing UCB bonus in applying OFU principle 
• UCB bonus is not scalable
• For GFA, requires complicated sensitivity sampling scheme [Wang et al, 

2020]



LSVI for Online RL with General VFA
• Initialize an arbitrary 𝑄5 ← 0

• For episode 𝑘 = 1, 2, …𝐾:
• Solve for 𝑄!% using LSVI on the history

• Collect a trajectory of data

𝜃!% ← arg𝑚𝑖𝑛&>
'

𝑓&(𝑠', 𝑎') − 𝑟 𝑠', 𝑎' +max
(

𝑄!)*% 𝑠')*, 𝑎
+

𝑄!% 𝑠, 𝑎 = 𝑓,()(𝑠, 𝑎)

𝑠!* , 𝑎!* , 𝑟!* → 𝑠"* , 𝑎"* , 𝑟"* → 𝑠,* , 𝑎,* , 𝑟,* → ⋯(𝑠#* , 𝑎#* , 𝑟#*)

Play current policy 𝜋*

Improve policy to 𝜋*+!

Data: [history 
trajectories]

exploration

exploitation
𝜋!" 𝑠 ← arg𝑚𝑎𝑥# 𝑄!"(s, 𝑎)



LSVI as Approximate Dynamic Programming (ADP)
• Each iteration solves

𝑄0+!*

𝑟 + 𝑃𝑉

Bellman update 
over samples

Least Square

𝑄0*= 𝑓1!"(𝑠, 𝑎)



Optimistic Sampling

𝑄E
F,G ⋅,⋅ = (𝑓E

F,G ⋅,⋅
𝑄EF ⋅,⋅ = min{max

G∈ I
𝑄E
F,G ⋅,⋅ , H − h + 1}



Theory for General functions

• Assumption:
• Realizability: The function set is the “image” of Bellman projection
• Corresponding to linear MDP for linear setting

• Eluder dimension [Russo&Van Roy’ 2013]
• 𝑑=: the longest determination sequence of the function set
• d-dim linear / generalized linear: ≈ 𝑑

𝑟 + 𝑃𝑉 ∈ ℱ, ∀𝑉

LSVI-PHE with optimistic sampling satisfies regret 
bound of 𝑶 poly 𝒅𝑬𝑯 √𝑻 with high probability

Theorem: 



Riverswim: 



Deep Sea: M sensitivity
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Mountain Car: 



Summary

• Provably efficient RVF method for RL with general function 
approximation

• Sublinear regret
• Computationally efficient

• Optimistic sampling allows us the unify OFU and Thompson 
Sampling
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