Dynamic Schur Complement of Graph Laplacian
 Georgia Tech

- Karate Club and Graph Laplacian
- Dynamic Laplacian by Schur Complement
- Dynamic Laplacian for Planar Graphs
- Dynamic Laplacian for General Graphs

Example of Graph: Zachary' s Karate Club

Example of Graph: Zachary' s Karate Club

Vertex 1~34: 34 club members
Edge: two people interacted outside the club

Example of Graph: Zachary' s Karate Club

How to Label the Graph

- $v_{1}=1$
- $v_{34}=0$
- Task: Define v_{2}, \ldots, v_{33}.

How to Label the Graph

- $v_{1}=1$
- $v_{34}=0$
- Task: Define v_{2}, \ldots, v_{33}.
- $v_{x}=$ average of v_{y} for $y \sim x$?

How to Label the Graph

- $v_{1}=1$
- $v_{34}=0$
- $v_{x}=$ average of v_{y} for $y \sim \mathrm{x}$
- v : Electric potentials

Electric Flow from Instructor to Administrator

Club Members Sorted by Labels

 270.052312 210.102497 190.102497 160.102497 150.102497 300.104625 240.161193 330.204993 230.204993 280.237501 100.255444 260.258846 250.277923 $29 \quad 0.28277$ 310.323029 320.337422 90.40778230.510887 200.559781 140.583623 20.679342 40.727888
80.729529
220.839671
180.839671 130.863944 17

11	1
7	1
6	1
5	1

Person Potential Outcome

Verify the Result

| 34 | 0 | 2 |
| ---: | ---: | ---: | ---: |
| 27 | 0.052312 | 2 |
| 21 | 0.102497 | 2 |
| 19 | 0.102497 | 2 |
| 16 | 0.102497 | 2 |
| 15 | 0.102497 | 2 |
| 30 | 0.104625 | 2 |
| 24 | 0.161193 | 2 |
| 33 | 0.204993 | 2 |
| 23 | 0.204993 | 2 |
| 28 | 0.237501 | 2 |
| 10 | 0.255444 | 2 |
| 26 | 0.258846 | 2 |
| 25 | 0.277923 | 2 |
| 29 | 0.28277 | 2 |
| 31 | 0.323029 | 2 |
| 32 | 0.337422 | 2 |
| 9 | 0.407782 | 1 |
| 3 | 0.510887 | 1 |
| 20 | 0.559781 | 1 |
| 14 | 0.583623 | 1 |
| 2 | 0.679342 | 1 |
| 4 | 0.727888 | 1 |
| 8 | 0.729529 | 1 |
| 22 | 0.839671 | 1 |
| 18 | 0.839671 | 1 |
| 13 | 0.863944 | 1 |
| 17 | 1 | 1 |
| 11 | 1 | 1 |
| 7 | 1 | 1 |
| 6 | 1 | 1 |
| 5 | 1 | 1 |
| 12 | 1 | 1 |
| 1 | 1 | 1 |

Graph Laplacian: Solving Electric Flow

- $v_{x}=\frac{\sum_{y \sim x} v_{y}}{\operatorname{deg}(x)}, \operatorname{deg}(x):$ degree of x
- $\operatorname{deg}(x) v_{x}-\sum_{y \sim x} v_{y}=0$

	s	t	u	z	w
s	3	0	-1	-1	-1
t	0	1	0	0	-1
u	-1	0	2	-1	0
z	-1	0	-1	3	-1
w	-1	-1	0	-1	3

$\mathrm{v}_{\mathrm{s}}=1$
$\mathrm{v}_{\mathrm{t}}=-1$
v_{u}
v_{z}
v_{w}
:---:
-d
0
0
0

voltages demands
Georgia
Tech

$$
\begin{aligned}
& \text { Graph Laplacian } \\
& \mathrm{L}(G)=D(G)-A(G)
\end{aligned}
$$

Classical and Theoretical Applications

- Semi-supervised learning in larger social networks

Laplacian Regularization term [Zhu, Ghahramani, Lafferty ICML '03]

- Graph clustering
- Network flows (maxflow, mincost flow \cdots.)

Sparsifying random walk matrices

- [Perozzi-Al-Rfou-Skiena KDD' 14] DeepWalk
- Learns embeddings of a graph by short random walks

Sparsifying random walk matrices

- [Perozzi-Al-Rfou-Skiena KDD' 14] DeepWalk
- Learns embeddings of a graph by short random walks

Sparsifying random walk matrices

- [Cheng-Cheng-Liu-Peng-Teng COLT' 15] Sparsifying random walk matrices:

Theorem [CCLPT' 15]: All length- T random walks in a graph can be sparsified in $\widetilde{O}\left(T^{2} m\right)$ time.

Sparsifying random walk matrices

- [Qiu-Dong-Ma-Li-Wang-Wang WWW' 19] NetSMF: LargeScale Network Embedding as Sparse Matrix Factorization
- 24 hours to generate embeddings of the OAG dataset (895,368,962 edges)
- Best paper in WWW' 19

Graph Laplacian

- Found in machine learning, network science, scientific computing, ...
- Can be solved in nearly-linear-time by Spielman-Teng

Spectral sparsification of graphs. SIAM J. Computing 40:981-1025, 2011.
A local clustering algorithm for massive graphs and its application to nearly linear time graph partitioning. SIAM J. Computing 42:1-26, 2013.

Nearly linear time algorithms for preconditioning and solving symmetric, diagonally dominant linear systems. SIAM J. Matrix Anal. Appl. 35:835-885, 2014.

Their works on nearly-linear-time Laplacian solvers resolved an outstanding open problem in numerical linear algebra: solving symmetric diagonally dominant linear systems in nearly linear time. This result delivered a new and extremely powerful algorithmic primitive: nearly linear time electrical flow computations.

- Karate Club and Graph Laplacian
- Dynamic Laplacian by Schur Complement
- Dynamic Laplacian for Planar Graphs
- Dynamic Laplacian for General Graphs

Dynamic Laplacian

Dynamic Laplacian

- A graph G
- Update: Add or delete an edge
- Query: Output electric potential of a vertex
(We can also support outputting electric flow on some edge, outputting vertices with large potential changes, ...)

Dynamic Laplacian

- Update labels when the graph changes
- Social representation w. temporal information?
- Network flow problems:

Maximum flow
Minimum cost flow

Application: Planar mincost flow

- Q: How many units of flow can we send from source to sink? What is the minimum cost of it?

Application: Planar mincost flow

- Theorem [DGGLPSY' 21]: Let G be a planar graph with n edges. Assume all demands, costs and capacities are bounded by M. \exists Algorithm computes a minimum cost flow in $O\left(n \log ^{O(1)} n \log M\right)$ time.
- Previously, the best planar mincost flow algorithm is the $O\left(n^{1.5} \log ^{O(1)} n \log ^{2} M\right)$ algorithm for all (planar and nonplanar) graphs.

Schur Complement -- Elimination

- $L x=b$
- $L=\left[\begin{array}{ll}L_{F F} & L_{F C} \\ L_{C F} & L_{C C}\end{array}\right]$
- $S c(L, C)=L_{C C}-L_{C F} L_{F F}^{-1} L_{F C}$
- If $b_{F}=0, S c(L, C) x_{C}=b_{C}$

Graph Laplacian - Electric Network

- Edge uv: conductance $w_{u v}$
(resistance $r_{u v}=1 / w_{u v}$)
- Vertex v: potential ϕ_{v}
- Edge orientation $u \rightarrow v$: current flow $C_{u \rightarrow v}$
- Kirchnoff' s Law:
\forall vertex v, flow-in = flow-out
- Ohm' s Law: \forall edge $u v, C_{u \rightarrow v}=\frac{\phi_{u}-\phi_{v}}{r_{u v}}$

Schur Complement - Equivalent Electric Network

- Let C be a subset of vertices. Suppose we only care about energies of edges in C.

- $\operatorname{Sc}(\mathrm{G}, \mathrm{C})$ preserves the energies on edges ${ }_{1}^{1 / 3}$ etween vertices in C
- $\mathrm{SC}(\mathrm{G}, \mathrm{C})$ is still a graph!
- Karate Club and Graph Laplacian
- Dynamic Laplacian by Schur Complement
- Dynamic Laplacian for Planar Graphs (By separator tree)
- Dynamic Laplacian for General Graphs

Schur complements on planar graph

- Planar graph G
- Update an edge
- Query vertex potentials on the boundary
- Schur complement of G onto the boundary vertices

A Separator Theorem

- Planar graph can be separated evenly by \sqrt{n} nodes
- Theorem [Ungar' 51, LiptonTarjan' 79] ヨ $O(\sqrt{n})$ vertices s.t. removing them partitions a planar graph into disjoint subgraphs with at most $2 n / 3$ vertices each.

Recursively Partition the Graph

- Each region is still a planar graph
- Recursion!

Recursively Partition the Graph

- Each region is still a planar graph
- Recursion!

Separator size: \sqrt{n}

Recursively Partition the Graph

- Each region is still a planar graph
- Recursion!

Separator size: \sqrt{n}

Recursively Partition the Graph

Separator tree

Georgia
Tech

Schur Complement Formula

- $S c(H, \delta H)=$ $S c(S c(L(H), \delta L(H))+$ $S c(R(H), \delta R(H)), \delta H)$

\Rightarrow
Georgia
$S c(H, \delta H)$

Update on the Separator Tree

- $S c(H, \delta H)=$ $S c(S c(L(H), \delta L(H))+$ $S c(R(H), \delta R(H)), \delta H)$

Georgia
Tech

Update on the Separator Tree

- $S c(H, \delta H)=$ $S c(S c(L(H), \delta L(H))+$ $S c(R(H), \delta R(H)), \delta H)$

Georgia
Tech

Update on the Separator Tree

- $S c(H, \delta H)=$ $S c(S c(L(H), \delta L(H))+$ Sc (R(H), $\delta R(H)), \delta H)$

Georgia
Tech

Update on the Separator Tree

- $S c(H, \delta H)=$ $S c(S c(L(H), \delta L(H))+$ Sc (R(H), $\delta R(H)), \delta H)$

Georgia
Tech

Update on the Separator Tree

- $S c(H, \delta H)=$ $S c(S c(L(H), \delta L(H))+$ Sc (R(H), $\delta R(H)), \delta H)$

Georgia
Tech

Update on the Separator Tree

- $S c(H, \delta H)=$ $S c(S c(L(H), \delta L(H))+$ $S c(R(H), \delta R(H)), \delta H)$

Georgia
Tech

Update on the Separator Tree

- $S c(H, \delta H)=$ $S c(S c(L(H), \delta L(H))+$ $S c(R(H), \delta R(H)), \delta H)$

Update on the Separator Tree

- $S c(H, \delta H)=$ $S c(S c(L(H), \delta L(H))+$ $S c(R(H), \delta R(H)), \delta H)$
root Separator size: \sqrt{n}

Update time

- Theorem: Modifying k edges costs only $O(\sqrt{n k})$ time

Update time

- Corollary: Modifying 1 edges costs $O(\sqrt{n})$ time

Update time

- Corollary: Modifying n edges costs $O(n)$ time

Application: Planar mincost flow

- Theorem [DGGLPSY' 21]: Let G be a planar graph with n edges. Assume all demands, costs and capacities are bounded by M. \exists Algorithm computes a minimum cost flow in $O\left(n \log ^{O(1)} n \log M\right)$ time.
- Interior point method: $\sqrt{n / k}$ batches of k updates each
- Dynamic electric flow: k updates in $\sqrt{n k}$ time
- Karate Club and Graph Laplacian
- Dynamic Laplacian by Schur Complement
- Dynamic Laplacian for Planar Graphs
- Dynamic Laplacian for General Graphs (By random walks)

Dynamic Laplacian on General Graphs

(1) Update $\left(\mathrm{e}, \mathbf{r}_{\mathrm{e}}^{\text {new }}\right)$: Change the resistance of e to $\mathbf{r}_{\mathrm{e}}^{\text {new }}$
(2) Query(v): Output the potential of any vertex v in the unit $s-t$ electrical flow

What is the potential of A ?

Graph Laplacian - Random Walks

- [Doyle-Snell `84] Unit electrical flow form sto is the expected trajectory of a random walk from s to t, with cancellations, w.r.t. to the edge conductances.
- Flow \mathbf{f}_{e} on edge $e=u v: E_{\text {rand walk }}[\#$ of $u v$ \# of vu]
- Potential $\boldsymbol{\phi}_{\mathrm{v}}$ of vertex $\mathrm{v}: \propto$ $\underset{\text { r.w. from v }}{\mathrm{Pr}}[\mathrm{s}$ is visited before t]

Schur Complement - Equivalent Electric Network

- Let C be a subset of vertices. Suppose we only care about energies of edges in C .

- $\operatorname{Sc}(\mathrm{G}, \mathrm{C})$ preserves the energies on edges between vertices in C

Schur Complement - Compressed Random Walk

- If a random walk goes outside, take it back with the correct probability distribution over vertices in C
- $\operatorname{Sc}(\mathrm{G}, \mathrm{C})=$

$$
\sum_{\mathbf{u}^{(0)}, \mathbf{u}^{(1)} \in \mathrm{C}, \forall 1 \leq i<l, u^{(i)} \notin \mathrm{C}} \frac{\Pi_{0 \leq j<k} \mathbf{w}_{u^{(j)} u^{(j+1)}}}{\Pi_{0<j<k} \operatorname{deg}\left(u^{(j)}\right)}
$$

(Sum over all random walks from C to C whose interior is disjoint from C)

Schur Complement: Static Approximation

- [DGGP `19]Theorem: Let C be a subset of vertices. For each edge $\mathrm{uv}=\mathrm{e} \in \mathrm{E}$, repeat $\rho=\widetilde{\mathrm{O}}\left(\epsilon^{-2}\right)$ times:

1. Sample a random walk from u until it hits C at some w .
2. Sample a random walk from v until it hits C at some z.
3. Connect the random walks above by the edge uv into one random walk W.
4. Add an edge between $w z$ with resistance $\rho \sum_{e \in W} \mathbf{r}_{\mathrm{e}}$ to H

Then H is an ϵ-approximation of $\mathrm{Sc}(\mathrm{G}, \mathrm{C})$

Sample random walk: Morris walk

- Need: First k distinct vertices visited and length of walk in between
- Repeat: Given the visited vertex, find (sample) the next new vertex

Sample random walk: Morris walk

- Given the visited vertex, find (sample) the next new vertex

States: $U \cup N(U)$
Exit states: $N(\mathrm{U})$
Non exit states: U
Goal: Sample the next exit state

Sample random walk: Morris walk

- Given the visited vertex, find (sample) the next new vertex

Electric current on e
= expected trajectory on e
$=\operatorname{Pr}[e$ is the last edge before exit]
Laplacian solver $\sqrt{ }$

Sample random walk: Morris walk

- Given the visited vertex, sample the next new vertex and length
- Dynamic programming: Can only get expectation of length

Solution: Morris counter [Morris' 1978]
The counter stores $\mathrm{x}=\log n$
Increase Counter: $x \leftarrow x+1$ with probability $1 / 2^{x}$
Property: By increasing the counter 2^{x} times, x is increased by 1 in expectation.

Sample random walk: Morris walk

- Given the visited vertex, sample the next new vertex and length

Solution: Morris counter [Morris' 1978]
The counter stores $\mathrm{x}=\log _{1+\epsilon} \epsilon n+1$
Increase Counter: with probability $1 /(1+\epsilon)^{x}$
Theorem: $\frac{1}{\epsilon}\left((1+\epsilon)^{X}-1\right)$ is w.h.p. $(1+\epsilon)-$ approximation of true counter

Sample random walk: Morris walk

- Given the visited vertex, sample the next new vertex and length

Current Morris counter value: x States: $V \times \mathbb{Z}$ Exit states: $N(\mathrm{U}) \times\{x\}$ and $V \times\{\geq x+1\}$ Non exit states: $U \times\{\mathrm{x}\}$ Goal: Sample the next exit state

Sample random walk: Morris walk

- Given the visited vertex, sample the next new vertex and length

Dynamic Schur Complement - Step 1

 Refeat \ddagger im
1: Saranhle

Then H is an ϵ-approximation of $\mathrm{Sc}(\mathrm{G}, \mathrm{C})$

Application: Maxflow

- Q: Can we fulfill the demand/supply by a flow not exceeding the capacities?

Pseudocode of Maxflow by IPM+Electric flow

while(more than 1 unit of flow remaining)
Determine edge resistances r by flows and capacities
Calculate electric flow from s to t by r
Route $1 / \sqrt{m}$ fraction of flow from s to t

Electric flow to accelerate maxflow

- Theorem [GLP' 21]: Let G be a graph with m edges. Assume all demands and capacities are bounded by M. \exists Algorithm computes a minimum cost flow in $O\left(m^{3 / 2-1 / 328} \log ^{O(1)} m \log M\right)$ time.
- Improve over the 20 -year-old $O\left(m^{3 / 2} \log ^{O(1)} m \log M\right)$ result by [Goldberg-Rao' 98]

Capacity Releasing Diffusion [WFHMR' 17]

- Flow diffusion: a process that spreads mass among vertices by sending mass along edges

Thank you!

