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• Karate Club and Graph Laplacian
• Dynamic Laplacian by Schur Complement
• Dynamic Laplacian for Planar Graphs
• Dynamic Laplacian for General Graphs



Example of Graph: Zachary’s Karate Club



Example of Graph: Zachary’s Karate Club

Vertex 1~34: 34 club members

Edge: two people interacted outside the club



Example of Graph: Zachary’s Karate Club



How to Label the Graph

• 𝑣! = 1
• 𝑣"# = 0
• Task: Define 𝑣$, … , 𝑣"".



How to Label the Graph

• 𝑣! = 1
• 𝑣"# = 0
• Task: Define 𝑣$, … , 𝑣"".
• 𝑣% = average of 𝑣& for 𝑦~x?



How to Label the Graph

• 𝑣! = 1
• 𝑣"# = 0
• 𝑣% = average of 𝑣& for 𝑦~x
• 𝑣: Electric potentials



Electric Flow from Instructor to Administrator

• 𝑣! = 1
• 𝑣"# = 0
• 𝑣% = average of 𝑣& for 𝑦~x
• 𝑣: Electric potentials

1 Volt Power Supply

Vertices: Pins
Edges: Resistors connecting pins



Club Members Sorted by Labels

Person Potential
34 0
27 0.052312
21 0.102497
19 0.102497
16 0.102497
15 0.102497
30 0.104625
24 0.161193
33 0.204993
23 0.204993
28 0.237501
10 0.255444
26 0.258846
25 0.277923
29 0.28277
31 0.323029
32 0.337422
9 0.407782
3 0.510887
20 0.559781
14 0.583623
2 0.679342
4 0.727888
8 0.729529
22 0.839671
18 0.839671
13 0.863944
17 1
11 1
7 1
6 1
5 1
12 1
1 1



Verify the Result

Person Potential Outcome
34 0 2
27 0.052312 2
21 0.102497 2
19 0.102497 2
16 0.102497 2
15 0.102497 2
30 0.104625 2
24 0.161193 2
33 0.204993 2
23 0.204993 2
28 0.237501 2
10 0.255444 2
26 0.258846 2
25 0.277923 2
29 0.28277 2
31 0.323029 2
32 0.337422 2
9 0.407782 1
3 0.510887 1
20 0.559781 1
14 0.583623 1
2 0.679342 1
4 0.727888 1
8 0.729529 1
22 0.839671 1
18 0.839671 1
13 0.863944 1
17 1 1
11 1 1
7 1 1
6 1 1
5 1 1
12 1 1
1 1 1



Graph Laplacian: Solving Electric Flow

• 𝑣% =
∑!~# (!
)*+ %

, deg 𝑥 : degree of x

• deg 𝑥 𝑣% − ∑&~% 𝑣& = 0
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Graph Laplacian 
L 𝐺 = 𝐷(𝐺) − 𝐴(𝐺)

voltages demands

Graph 𝐺



Classical and Theoretical Applications

• Semi-supervised learning in larger social networks 
Laplacian Regularization term [Zhu, Ghahramani, Lafferty ICML ’03]
• Graph clustering
• Network flows (maxflow, mincost flow…)



Sparsifying random walk matrices

• [Perozzi-Al-Rfou-Skiena KDD’14] DeepWalk
• Learns embeddings of a graph by short random walks
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Sparsifying random walk matrices

• [Perozzi-Al-Rfou-Skiena KDD’14] DeepWalk
• Learns embeddings of a graph by short random walks



Sparsifying random walk matrices

• [Cheng-Cheng-Liu-Peng-Teng COLT’15] Sparsifying random 
walk matrices: 

Theorem [CCLPT’15]: All length-𝑇 random walks in a graph 
can be sparsified in 2𝑂 𝑇$𝑚 time.



Sparsifying random walk matrices

• [Qiu-Dong-Ma-Li-Wang-Wang WWW’19] NetSMF: Large-
Scale Network Embedding as Sparse Matrix
Factorization

• 24 hours to generate embeddings of the OAG dataset 
(895,368,962 edges)

• Best paper in WWW’19



Graph Laplacian

• Found in machine learning, network science, scientific computing, …

• Can be solved in nearly-linear-time by Spielman-Teng



• Karate Club and Graph Laplacian
• Dynamic Laplacian by Schur Complement
• Dynamic Laplacian for Planar Graphs
• Dynamic Laplacian for General Graphs



Dynamic Laplacian



Dynamic Laplacian

• A graph 𝐺
• Update: Add or delete an edge
• Query: Output electric potential of a 

vertex 
(We can also support outputting 
electric flow on some edge, outputting 
vertices with large potential changes, 
…)



Dynamic Laplacian

• Update labels when the graph changes
• Social representation w. temporal information?
• Network flow problems: 

Maximum flow
Minimum cost flow



Application: Planar mincost flow

• Given 
• Graph G = (V, E)
• Capacities of the edges
• Costs of the edges
• A source and a sink

• Q: How many units of flow can we send from source to sink? What is 
the minimum cost of it?
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Application: Planar mincost flow

• Theorem [DGGLPSY’21]: Let 𝐺 be a planar graph with 𝑛 edges. 
Assume all demands, costs and capacities are bounded by 𝑀. ∃
Algorithm computes a minimum cost flow in 
𝑂 𝑛 log- ! 𝑛 log𝑀 time.

• Previously, the best planar mincost flow algorithm is the 
𝑂 𝑛!./ log- ! 𝑛 log$𝑀 algorithm for all (planar and nonplanar) 
graphs. 



Schur Complement -- Elimination

• 𝐿𝑥 = 𝑏

• 𝑆𝑐 𝐿, 𝐶 = 𝐿00 − 𝐿01𝐿112!𝐿10

• If 𝑏1 = 0, 𝑆𝑐 𝐿, 𝐶 𝑥0 = 𝑏0

• 𝐿=
𝐿11 𝐿10
𝐿01 𝐿00



Graph Laplacian – Electric Network

• Edge uv: conductance 𝑤3(
(resistance 𝑟3( = 1/𝑤3()

• Vertex v: potential 𝜙(
• Edge orientation 𝑢 → 𝑣: current flow 𝐶3→(
• Kirchnoff’s Law: 

∀ vertex 𝑣, flow-in = flow-out

• Ohm’s Law: ∀ edge 𝑢𝑣, 𝐶3→( =
5$25%
6$%
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Schur Complement – Equivalent Electric 
Network
• Let C be a subset of vertices. Suppose we only care about energies of 

edges in C.

• Sc(G,	C)	preserves the energies on edges between vertices in C
• SC(G,	C)	is	still	a	graph!
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• Karate Club and Graph Laplacian
• Dynamic Laplacian by Schur Complement
• Dynamic Laplacian for Planar Graphs (By separator tree)
• Dynamic Laplacian for General Graphs



Schur complements on planar graph

• Planar graph 𝐺
• Update an edge
• Query vertex potentials on the 

boundary

• Schur complement of 𝐺 onto 
the boundary vertices



A Separator Theorem

• Planar graph can be separated 
evenly by 𝑛 nodes

• Theorem [Ungar’51, Lipton-
Tarjan’79] ∃ O 𝑛 vertices 
s.t. removing them partitions a 
planar graph into disjoint 
subgraphs with at most 2𝑛/3
vertices each. 



Recursively Partition the Graph

• Each region is still a planar 
graph
• Recursion!

root Separator size: 𝑛



Recursively Partition the Graph

• Each region is still a planar 
graph
• Recursion!

root Separator size: 𝑛

𝑛/2



Recursively Partition the Graph

• Each region is still a planar 
graph
• Recursion!

root Separator size: 𝑛

𝑛/2

𝑛/4



Recursively Partition the Graph

Separator tree

root

。。。。。。。。。。。。。。。。

Separator size: 𝑛

𝑛/2

𝑛/4

𝑛/8



Schur Complement Formula

• 𝑆𝑐 𝐻, 𝛿𝐻 =
𝑆𝑐L

M
𝑆𝑐 𝐿 𝐻 , 𝛿𝐿 𝐻 +

𝑆𝑐 𝑅 𝐻 , 𝛿𝑅 𝐻 , 𝛿𝐻
𝑆𝑐 𝐿 𝐻 , 𝛿𝐿 𝐻 𝑆𝑐 𝑅 𝐻 , 𝛿𝑅 𝐻

+

𝑆𝑐 𝐿 𝐻 , 𝛿𝐿 𝐻 + 𝑆𝑐 𝑅 𝐻 , 𝛿𝑅 𝐻

=

⇒

𝑆𝑐 𝐻, 𝛿𝐻



Update on the Separator Tree

• 𝑆𝑐 𝐻, 𝛿𝐻 =
𝑆𝑐L

M
𝑆𝑐 𝐿 𝐻 , 𝛿𝐿 𝐻 +

𝑆𝑐 𝑅 𝐻 , 𝛿𝑅 𝐻 , 𝛿𝐻
root Separator size: 𝑛

𝑛/2

𝑛/4

𝑛/8

。。。。。。。。。。。。。。。。



Update on the Separator Tree
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Update time

• Theorem: Modifying 𝑘 edges 
costs only 𝑂 𝑛𝑘 time

root Separator size: 𝑛
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Application: Planar mincost flow

• Theorem [DGGLPSY’21]: Let 𝐺 be a planar graph with 𝑛 edges. 
Assume all demands, costs and capacities are bounded by 𝑀. ∃
Algorithm computes a minimum cost flow in 
𝑂 𝑛 log- ! 𝑛 log𝑀 time.

• Interior point method: 𝑛/𝑘 batches of 𝑘 updates each

• Dynamic electric flow: 𝑘 updates in 𝑛𝑘 time 



• Karate Club and Graph Laplacian
• Dynamic Laplacian by Schur Complement
• Dynamic Laplacian for Planar Graphs
• Dynamic Laplacian for General Graphs (By random walks)



Dynamic Laplacian on General Graphs

(1) Update(e, 𝐫7879): Change the resistance of e to 𝐫7879

(2) Query(v): Output the potential of any vertex 𝑣 in the unit s − t
electrical flow

What is the potential of A?



Graph Laplacian – Random Walks
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• [Doyle-Snell `84] Unit electrical flow form s to t is 
the expected trajectory of a random walk 

from s to t, with cancellations, w.r.t. to the edge 
conductances.
• Flow 𝐟7 on edge e = uv:  E:;8< 9;=>[

]
# of uv −

# of vu
• Potential 𝛟? of vertex v: ∝

Pr
:.9. @:AB ?

s is visited before t



Schur Complement – Equivalent Electric 
Network
• Let C be a subset of vertices. Suppose we only care about 

energies of edges in C.

• Sc(G,	C)	preserves the energies on edges between vertices in C

T

1 1

1 1

1

1

C

1

1/3

1/3

1/3

1/3

1/3 1/3
1

1



Schur Complement – Compressed Random 
Walk
• If a random walk goes outside, take it back with the correct 

probability distribution over vertices in C

• Sc(G,C)	=
i

C & ,C ' ∈F,∀!HIJ=,C ( ∉F

ΠLHMJ>𝐰C ) C )*+

ΠLJMJ> deg u M

(Sum over all random walks from C to C whose interior is disjoint 
from C)



Schur Complement: Static Approximation

• [DGGP `19]Theorem: Let C be a subset of vertices. For each edge 
uv = e ∈ E, repeat ρ = nO ϵ2$ times: 
1. Sample a random walk from u until it hits C at some w.
2. Sample a random walk from v until it hits C at some z.
3. Connect the random walks above by the edge uv into one 

random walk W.
4. Add an edge between wz with resistance ρ∑7∈N 𝐫7 to H

Then H is an ϵ-approximation of Sc G, C
Edge energies are preserved upto 1 ± ϵ



C

The terminal set



Sample random walk: Morris walk

• Need: First 𝑘 distinct vertices visited and length of walk in between

• Repeat: Given the visited vertex, find (sample) the next new vertex



Sample random walk: Morris walk

• Given the visited vertex, find (sample) the next new vertex

S

exit

States: 𝑈 ∪ 𝑁 𝑈
Exit states: 𝑁 U
Non exit states: 𝑈
Goal: Sample the next exit state



Sample random walk: Morris walk

• Given the visited vertex, find (sample) the next new vertex

S

exit

Electric current on 𝑒
= expected trajectory on 𝑒
= Pr 𝑒 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑒𝑑𝑔𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑒𝑥𝑖𝑡

Laplacian solver √



Sample random walk: Morris walk

• Given the visited vertex, sample the next new vertex and length
• Dynamic programming: Can only get expectation of length

Solution: Morris counter [Morris’1978]
The counter stores x = log 𝑛
Increase Counter: 𝑥 ← 𝑥 + 1 with probability 1/2%

Property: By increasing the counter 2% times, 𝑥 is 
increased by 1 in expectation. 



Sample random walk: Morris walk

• Given the visited vertex, sample the next new vertex and length

Solution: Morris counter [Morris’1978]
The counter stores x = log!OP 𝜖𝑛 + 1
Increase Counter: with probability 1/ 1 + 𝜖 %

Theorem: !
P

1 + 𝜖 Q − 1 is w.h.p. 1 + 𝜖 -
approximation of true counter



Sample random walk: Morris walk

• Given the visited vertex, sample the next new vertex and length

S

exit

Current Morris counter value: 𝑥
States: 𝑉×ℤ
Exit states: 𝑁 U × 𝑥 and 𝑉×{≥ 𝑥 + 1}
Non exit states: 𝑈× x
Goal: Sample the next exit state



Sample random walk: Morris walk

• Given the visited vertex, sample the next new vertex and length

S S

Exit 
(new 
vertex)

Exit
(Morris
Counter++)



Dynamic Schur Complement – Step 1

• Theorem: Let C be a subset of vertices. For each edge uv = e ∈ E, 
repeat ρ = nO ϵ2$ times: 
1. Sample a random walk from u until it hits C at some w.
2. Sample a random walk from v until it hits C at some z.
3. Connect the random walks above by the edge uv into one 

random walk W.
4. Add an edge between wz with resistance ρ∑7∈N 𝐫7 to H

Then H is an ϵ-approximation of Sc G, C

• Let C be a subset of vertices. For each edge uv ⊆ C, repeat ρ =
nO ϵ2$ times: 
1. A random walk from u hits C at u.
2. A random walk from v hits C at v.
3. Connect the random walks above by the edge uv into one 

random walk W = (uv).
4. Add an edge between uv with resistance ρ𝐫C?to H



C

The terminal set
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Dynamic Schur Complement – Step 2



C

The terminal set

v

Dynamic Schur Complement – Step 2



Application: Maxflow

• Given 
• Graph G = (V, E)
• Capacities of the edges
• Demand or supply of the source and sink

• Q: Can we fulfill the demand/supply by a flow not exceeding the 
capacities?
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Pseudocode of Maxflow by IPM+Electric flow

while(more than 1 unit of flow remaining)
Determine edge resistances 𝑟 by flows and capacities
Calculate electric flow from 𝑠 to 𝑡 by 𝑟
Route 1/ 𝑚 fraction of flow from 𝑠 to 𝑡



Electric flow to accelerate maxflow

• Theorem [GLP’21]: Let 𝐺 be a graph with 𝑚 edges. Assume all 
demands and capacities are bounded by 𝑀. ∃ Algorithm 
computes a minimum cost flow in 
𝑂 𝑚"/$2!/"$S log- ! 𝑚 log𝑀 time.

• Improve over the 20-year-old 𝑂 𝑚"/$ log- ! 𝑚 log𝑀 result by 
[Goldberg-Rao’98]



Capacity Releasing Diffusion [WFHMR’17]

• Flow diffusion: a process that 
spreads mass among vertices 
by sending mass along edges



Thank you!


