Dynamic Schur Complement of Graph Laplacian

Yu Gao Georgia Tech

• Karate Club and Graph Laplacian

- Dynamic Laplacian by Schur Complement
- Dynamic Laplacian for Planar Graphs
- Dynamic Laplacian for General Graphs

Example of Graph: Zachary's Karate Club

Example of Graph: Zachary's Karate Club

Vertex 1~34: 34 club members

Edge: two people interacted outside the club

Example of Graph: Zachary's Karate Club

How to Label the Graph

- $v_1 = 1$
- $v_{34} = 0$
- Task: Define v_2, \ldots, v_{33} .

How to Label the Graph

- $v_1 = 1$
- $v_{34} = 0$
- Task: Define v_2, \ldots, v_{33} .
- v_x = average of v_y for $y \sim x$?

How to Label the Graph

- $v_1 = 1$
- $v_{34} = 0$
- v_x = average of v_y for $y \sim x$
- *v*: Electric potentials

Electric Flow from Instructor to Administrator

Club Members Sorted by Labels

Person	Potential
34	0
27	0.052312
21	0.102497
. 19	0.102497
16	0.102497
15	0.102497
30	0.104625
24	0.161193
33	0.204993
23	0.204993
28	0.237501
10	0.255444
26	0.258846
25	0.277923
29	0.28277
31	0.323029
32	0.337422
9	0.407782
3	0.510887
20	0.559781
14	0.583623
2	0.679342
4	0.727888
8	0.729529
22	0.839671
18	0.839671
13	0.863944
17	1
11	1
7	1
6	1
5	1
12	1
1	1

Verify the Result

Person		Potential	Outcome
	34	0	2
	27	0.052312	2
	21	0.102497	2
	19	0.102497	2
	16	0.102497	2
	15	0.102497	2
	30	0.104625	2
	24	0.161193	2
	33	0.204993	2
	23	0.204993	2
	28	0.237501	2
	10	0.255444	2
	26	0.258846	2
	25	0.277923	2
	29	0.28277	2
	31	0.323029	2
	32	0.337422	2
	9	0.407782	1
	3	0.510887	1
	20	0.559781	1
	14	0.583623	1
	2	0.679342	1
	4	0.727888	1
	8	0.729529	1
	22	0.839671	1
	18	0.839671	1
	13	0.863944	1
	17	1	1
	11	1	1
	7	1	1
	6	1	1
	5	1	1
	12	1	1
	1	1	1

Graph Laplacian: Solving Electric Flow

•
$$v_x = \frac{\sum_{y \sim x} v_y}{deg(x)}$$
, $deg(x)$: degree of x
• $deg(x) v_x - \sum_{y \sim x} v_y = 0$

Graph Laplacian L(G) = D(G) - A(G)

Classical and Theoretical Applications

- Semi-supervised learning in larger social networks Laplacian Regularization term [Zhu, Ghahramani, Lafferty ICML '03]
- Graph clustering
- Network flows (maxflow, mincost flow…)

- [Perozzi-Al-Rfou-Skiena KDD' 14] DeepWalk
- Learns embeddings of a graph by short random walks

Georgia

- [Perozzi-Al-Rfou-Skiena KDD' 14] DeepWalk
- Learns embeddings of a graph by short random walks

[Cheng-Cheng-Liu-Peng-Teng COLT' 15] Sparsifying random walk matrices:

Theorem [CCLPT' 15]: All length-T random walks in a graph can be sparsified in $\tilde{O}(T^2m)$ time.

- [Qiu-Dong-Ma-Li-Wang-Wang WWW' 19] NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization
- 24 hours to generate embeddings of the OAG dataset (895,368,962 edges)
- Best paper in WWW' 19

Graph Laplacian

• Found in machine learning, network science, scientific computing, …

• Can be solved in nearly-linear-time by Spielman-Teng

Spectral sparsification of graphs. SIAM J. Computing 40:981-1025, 2011.

A local clustering algorithm for massive graphs and its application to nearly linear time graph partitioning. *SIAM J. Computing* 42:1-26, 2013.

Nearly linear time algorithms for preconditioning and solving symmetric, diagonally dominant linear systems. *SIAM J. Matrix Anal. Appl.* 35:835-885, 2014.

Their works on nearly-linear-time Laplacian solvers resolved an outstanding open problem in numerical linear algebra: solving symmetric diagonally dominant linear systems in nearly linear time. This result delivered a new and extremely powerful algorithmic primitive: nearly linear time electrical flow computations.

- Karate Club and Graph Laplacian
- Dynamic Laplacian by Schur Complement
- Dynamic Laplacian for Planar Graphs
- Dynamic Laplacian for General Graphs

Dynamic Laplacian

Tech

Dynamic Laplacian

- A graph G
- Update: Add or delete an edge
- Query: Output electric potential of a vertex

(We can also support outputting electric flow on some edge, outputting vertices with large potential changes, ...)

Dynamic Laplacian

- Update labels when the graph changes
- Social representation w. temporal information?

8

10

- Network flow problems:
 - Maximum flow Minimum cost flow

Application: Planar mincost flow

- Given
 - Graph G = (V, E)
 - Capacities of the edges
 - Costs of the edges
 - A source and a sink
- Q: How many units of flow can we send from source to sink? What is the minimum cost of it?

Application: Planar mincost flow

- Theorem [DGGLPSY' 21]: Let G be a planar graph with n edges. Assume all demands, costs and capacities are bounded by M. \exists Algorithm computes a minimum cost flow in $O(n \log^{O(1)} n \log M)$ time.
- Previously, the best planar mincost flow algorithm is the $O(n^{1.5} \log^{O(1)} n \log^2 M)$ algorithm for all (planar and nonplanar) graphs.

Schur Complement -- Elimination

•
$$Lx = b$$

• $L = \begin{bmatrix} L_{FF} & L_{FC} \\ L_{CF} & L_{CC} \end{bmatrix}$

- $Sc(L,C) = L_{CC} L_{CF}L_{FF}^{-1}L_{FC}$
- If $b_F = 0$, $Sc(L, C)x_C = b_C$

Graph Laplacian – Electric Network

• Edge uv: conductance w_{uv}

(resistance $r_{uv} = 1/w_{uv}$)

- Vertex v: potential $\phi_{
 u}$
- Edge orientation $u \rightarrow v$: current flow $C_{u \rightarrow v}$
- Kirchnoff' s Law:

 \forall vertex v, flow-in = flow-out

• Ohm' s Law:
$$\forall$$
 edge uv , $C_{u \rightarrow v} = \frac{\phi_u - \phi_v}{r_{uv}}$

Schur Complement – Equivalent Electric Network

 Let C be a subset of vertices. Suppose we only care about energies of edges in C.

• SC(G, C) is still a graph!

- Karate Club and Graph Laplacian
- Dynamic Laplacian by Schur Complement
- Dynamic Laplacian for Planar Graphs (By separator tree)
- Dynamic Laplacian for General Graphs

Schur complements on planar graph

- Planar graph G
- Update an edge
- Query vertex potentials on the boundary
- Schur complement of *G* onto the boundary vertices

A Separator Theorem

- Planar graph can be separated evenly by \sqrt{n} nodes
- Theorem [Ungar' 51, Lipton-Tarjan' 79] $\exists O(\sqrt{n})$ vertices s.t. removing them partitions a planar graph into disjoint subgraphs with at most 2n/3vertices each.

- Each region is still a planar graph
- Recursion! root Separator size: \sqrt{n}

 Each region is still a planar graph

 Each region is still a planar graph

Separator tree

Schur Complement Formula

• $Sc(H, \delta H) =$ $Sc(Sc(L(H), \delta L(H)) +$ $Sc(R(H), \delta R(H)), \delta H)$

 $Sc(L(H), \delta L(H))$

 \Rightarrow

 $Sc(R(H), \delta R(H))$

+

 $Sc(L(H), \delta L(H)) + Sc(R(H), \delta R(H))$

 $Sc(H, \delta H)$

Georgia Tech

Georgia Tech

Update time

• Theorem: Modifying k edges costs only $O(\sqrt{nk})$ time

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Update time

• Corollary: Modifying 1 edges costs $O(\sqrt{n})$ time

Update time

• Corollary: Modifying n edges costs O(n) time

Application: Planar mincost flow

- Theorem [DGGLPSY' 21]: Let G be a planar graph with n edges. Assume all demands, costs and capacities are bounded by M. \exists Algorithm computes a minimum cost flow in $O(n \log^{O(1)} n \log M)$ time.
- Interior point method: $\sqrt{n/k}$ batches of k updates each
- Dynamic electric flow: k updates in \sqrt{nk} time

- Karate Club and Graph Laplacian
- Dynamic Laplacian by Schur Complement
- Dynamic Laplacian for Planar Graphs
- Dynamic Laplacian for General Graphs (By random walks)

Dynamic Laplacian on General Graphs

(1) Update(e, \mathbf{r}_{e}^{new}): Change the resistance of e to \mathbf{r}_{e}^{new} (2) Query(v): Output the potential of any vertex v in the unit s – t electrical flow

What is the potential of A?

Graph Laplacian – Random Walks

W

U

- [Doyle-Snell `84] Unit electrical flow form s to t is the expected trajectory of a random walk from s to t, with cancellations, w.r.t. to the edge conductances.
 - Flow \mathbf{f}_e on edge e = uv: $E_{rand walk}$ [# of uv -# of vu]
 - Potential Φ_v of vertex v: ∝
 Pr [s is visited before t] r.w. from v

Schur Complement – Equivalent Electric Network

• Let C be a subset of vertices. Suppose we only care about energies of edges in C.

• Sc(G, C) preserves the energies on edges between vertices in C

Schur Complement – Compressed Random Walk

 If a random walk goes outside, take it back with the correct probability distribution over vertices in C

• Sc(G,C) =

$\sum_{\substack{u^{(0)}, u^{(l)} \in C, \forall 1 \le i < l, u^{(i)} \notin C}} \frac{\prod_{0 \le j < k} \mathbf{w}_{u^{(j)} u^{(j+1)}}}{\prod_{0 < j < k} \deg(u^{(j)})}$

(Sum over all random walks from C to C whose interior is disjoint from C)

Schur Complement: Static Approximation

- [DGGP `19]Theorem: Let C be a subset of vertices. For each edge $uv = e \in E$, repeat $\rho = \widetilde{O}(\epsilon^{-2})$ times:
 - 1. Sample a random walk from u until it hits C at some w.
 - 2. Sample a random walk from v until it hits C at some z.

3. Connect the random walks above by the edge $\mathbf{u}\mathbf{v}$ into one random walk \mathbf{W} .

4. Add an edge between wz with resistance $\rho \sum_{e \in W} \mathbf{r}_e$ to H

Then H is an ϵ -approximation of Sc(G,C)

Edge energies are preserved upto (1 \pm ϵ

Georgia

- Need: First k distinct vertices visited and length of walk in between
- Repeat: Given the visited vertex, find (sample) the next new vertex

Given the visited vertex, find (sample) the next new vertex

States: $U \cup N(U)$ Exit states: N(U)Non exit states: UGoal: Sample the next exit state

Given the visited vertex, find (sample) the next new vertex

Electric current on e
= expected trajectory on e
= Pr[e is the last edge before exit]

Laplacian solver $\sqrt{}$

- Given the visited vertex, sample the next new vertex and length
- Dynamic programming: Can only get expectation of length

Solution: Morris counter [Morris' 1978] The counter stores $x = \log n$ Increase Counter: $x \leftarrow x + 1$ with probability $1/2^x$ Property: By increasing the counter 2^x times, x is increased by 1 in expectation.

Given the visited vertex, sample the next new vertex and length

Solution: Morris counter [Morris' 1978] The counter stores $x = \log_{1+\epsilon} \epsilon n + 1$ Increase Counter: with probability $1/(1+\epsilon)^x$ Theorem: $\frac{1}{\epsilon}((1+\epsilon)^X - 1)$ is w.h.p. $(1+\epsilon)$ -approximation of true counter

Given the visited vertex, sample the next new vertex and length

Current Morris counter value: xStates: $V \times \mathbb{Z}$ Exit states: $N(U) \times \{x\}$ and $V \times \{\ge x + 1\}$ Non exit states: $U \times \{x\}$ Goal: Sample the next exit state

Given the visited vertex, sample the next new vertex and length

Dynamic Schur Complement – Step 1

- the Green subset of vertices of vertices. For each edge $\Phi \in E$, $P(\epsilon) = \Phi \in E$, $P(\epsilon) = \Phi \in E$, $P(\epsilon) = \Phi = \Phi \in E$, $P(\epsilon) = \Phi = \Phi \in E$.
 - 1: Sample Brandoff Walk hits Cat until it hits Cat some w.
 - 2: Sample Brandboff Walk hits C at some z.
- 3. Connect the random walks above by the edge UV into one random walks above by the edge UV into one random walk W = (uv).
 - 4: Add an edge between W_Z with resistance $\rho_{\Sigma_{e\in W}}^{r}$ to H

Then H is an ϵ -approximation of Sc(G,C)

V \mathcal{C} The terminal set Georgia Tech Dynamic Schur Complement – Step 2

V \mathcal{C} The terminal set Georgia Tech Dynamic Schur Complement – Step 2

Application: Maxflow

- Given
 - Graph G = (V, E)
 - Capacities of the edges
 - Demand or supply of the source and sink
- Q: Can we fulfill the demand/supply by a flow not exceeding the capacities?

Pseudocode of Maxflow by IPM+Electric flow

while(more than 1 unit of flow remaining) Determine edge resistances r by flows and capacities Calculate electric flow from s to t by rRoute $1/\sqrt{m}$ fraction of flow from s to t

Electric flow to accelerate maxflow

- Theorem [GLP' 21]: Let G be a graph with m edges. Assume all demands and capacities are bounded by M. \exists Algorithm computes a minimum cost flow in $O(m^{3/2-1/328} \log^{O(1)} m \log M)$ time.
- Improve over the 20-year-old $O(m^{3/2} \log^{O(1)} m \log M)$ result by [Goldberg-Rao' 98]

Capacity Releasing Diffusion [WFHMR' 17]

 Flow diffusion: a process that spreads mass among vertices by sending mass along edges

Thank you!

