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Example of Graph: Zachary' s Karate Club
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Example of Graph: Zachary' s Karate Club
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Example of Graph: Zachary' s Karate Club
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How to Label the Graph
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* Task: Define v,, ..., U33.
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How to Label the Graph

cv; =1

* V3, =0

* Task: Define v,, ..., U33.

* v, = average of v, for y~x?
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How to Label the Graph

.’Ul:l
* U3y =0

* v, = average of vy, for y~x
* v: Electric potentials
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Flectric Flow from Instructor to Administrator

1 Volt Power Supply

Vertices: Pins
Edges: Resistors connecting pins




Person Potential
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\Verify the Result
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Graph Laplacian: Solving Electric Flow

Ly~xVy
deg(x)’
o deg(X) Uy — Zny Uy =0

.’Ux:

deg(x): degree of x

t u Z W
Vg = 1 d
S 0 1 -1 1
ve =—1 —d
L 1 0 -1
Dy _10
u -1 0 1 0 =
Uy 0
Z -1 0 -1 3 -1
Dw 0
W -1 -1 0 -1 3

voltages demands
Graph Laplacian %22;‘1913
L(G) = D(G) — A(G)




Classical and Theoretical Applications

* Semi-supervised learning In larger social networks
Laplacian Regularization term [Zhu, Ghahramani, Lafferty ICML 03]

* Graph clustering
* Network flows (maxflow, mincost flow: )
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Sparsifying random walk matrices

* [Perozzi-Al-Rfou-Skiena KDD'" 14] DeepWalk
* Learns embeddings of a graph by short random walks

5. Georgia
€ ==
==L Tech



Sparsifying random walk matrices

* [Perozzi-Al-Rfou-Skiena KDD'" 14] DeepWalk
* Learns embeddings of a graph by short random walks

g
A
A/ = F %o o
W o
£ X
(a) Input: Karate Graph (b) Output: Representation
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Sparsifying random walk matrices

* [Cheng-Cheng-Liu-Peng-Teng COLT" 15] Sparsifying random
walk matrices:

Theorem [CCLPT" 15]: All length-T random walks Iin a graph
can be sparsified in 0(T*m) time.
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Sparsifying random walk matrices

* [Qiu-Dong-Ma-Li-Wang-Wang WWW" 19] NetSMF: Large-
Scale Network Embedding as Sparse Matrix
Factorization

* 24 hours to generate embeddings of the OAG dataset
(895,368,962 edges)

* Best paper in WWW" 19
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Graph Laplacian

* Found In machine learning, network science, scientific computing, -

* Can be solved Iin nearly-linear-time by Spielman-Teng

Spectral sparsification of graphs. SIAM J. Computing 40:981-1025, 2011.

A local clustering algorithm for massive graphs and its application to nearly linear time
graph partitioning. SIAM J. Computing 42:1-26, 2013.

Nearly linear time algorithms for preconditioning and solving symmetric, diagonally
dominant linear systems. SIAM J. Matrix Anal. Appl. 35:835-885, 2014.

Their works on nearly-linear-time Laplacian solvers resolved an outstanding open problem in
numerical linear algebra: solving symmetric diagonally dominant linear systems in nearly linear
time. This result delivered a new and extremely powerful algorithmic primitive: nearly linear
time electrical flow computations.
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Dynamic Laplacian
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Dynamic Laplacian

* A graph G
* Update: Add or delete an edge

* Query: Output electric potential of a
vertex

(We can also support outputting
electric flow on some edge, outputting
vertices with large potential changes,
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Dynamic Laplacian

* Update labels when the graph changes

3= 34 S 2

* Social representation w. temporal information?g>7"//"\ "\\\\‘\3

N4 \
Y NS
20 g /,/{ 2 A\'ﬂ',t\v <'\\§\ \
* Network flow problems: ///’ AN\ \\
Maximum flow

Minimum cost flow




Application: Planar mincost flow

* Glven
* Graph G = (V,E)
* Capacities of the edges
* Costs of the edges source
* A source and a sink

* Q: How many units of flow can we send from source to sink? What is
the minimum cost of 1t?
—
Gr e



Application: Planar mincost flow

* Theorem [DGGLPSY' 21]: Let G be a planar graph with n edges.
Assume all demands, costs and capacities are bounded by M. 3
Algorithm computes a minimum cost flow In

0(nlog®® nlogM) time.

* Previously, the best planar mincost flow algorithm is the

0(n*°log®™® nlog? M) algorithm for all (planar and nonplanar)
graphs.
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schur Complement -- Elimination
*Lx=0> . _[Lrr Lrc
= DA

* Sc(L,C) = Lec — LepLrrLpe

 |f bF — O, SC(L, C)XC — bC
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Graph Laplacian — Electric Network

* Edge uv: conductance wy,,
(resistance 1, = 1/wy,,)
* Vertex v: potential ¢,
* Edge orientation u — v: current flow C,,_,,
* Kirchnoff® s Law:

V vertex v, flow-in = flow-out

« Ohm' slaw: V edgeuv, C,_,, = Pu—Py

Tuv



schur Complement — Equivalent Electric
Network

* Let C be a subset of vertices. Suppose we only care about energies of
edges in C.

1/3
1 1/3

.
C

* Sc(G, C) preserves the energies on edges between vertices in G

* SC(G, C) is still a graph!
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Schur complements on planar graph

* Planar graph G
* Update an edge

* Query vertex potentials on the
boundary

* Schur complement of G onto
the boundary vertices
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A Separator Theorem

* Planar graph can be separated
evenly by v/n nodes

* Theorem [Ungar’ 51, Lipton-
Tarjan’ 79] 3 0(y/n) vertices
s.t. removing them partitions a
planar graph into disjoint
subgraphs with at most 2n/3
vertices each.
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Recursively Partition the Graph

* Each region is still a planar
graph
* Recursion!

Separator size:y/n
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Recursively Partition the Graph

* Each region is still a planar
graph
* Recursion!

Separator size:/n

Jn/2
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Recursively Partition the Graph

* Each region is still a planar
graph
* Recursion!

Separator size:/n
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Recursively Partition the Graph

Separator tree

Separator size:/n

oooooooooooooooo Gr Georgia
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schur Complement Formula

* Sc(H,6H) =
SC(SC(L(H), 5L(H)) + C +
Sc(R(H),SR(H)), 5H)

Sc(L(H),SL(H))

>\
N

Sc(R(H),SR(H))

L1

Sc(L(H),8L(H)) + Sc(R(H), SR(H))

ﬁ

Sc(H,SH)
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Update on the Separator Tree

* Sc(H,0H) =
SC(SC(L(H), 5L(H)) +
Sc(R(H),SR(H)), 5H)

Separator size:y/n

oooooooooooooooo Gr Georgia
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Update on the Separator Tree

* Sc(H,0H) =
SC(SC(L(H), 5L(H)) +
Sc(R(H),SR(H)),5H)

Separator size:/n

OOOOOOOOOOOOOOOO
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Update on the Separator Tree

* Sc(H,0H) =
SC(SC(L(H), 5L(H)) +
Sc(R(H),SR(H)),5H)

Separator size:/n
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Update on the Separator Tree

* Sc(H,0H) =
SC(SC(L(H), 6L(H)) +
Sc(R(H),SR(H)),5H)

Separator size:/n
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Update on the Separator Tree

* Sc(H,0H) =
SC(SC(L(H), 6L(H)) +
Sc(R(H),SR(H)),5H)

Separator size:/n
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Update on the Separator Tree

* Sc(H,6H) =
SC(SC(L(H), 6L(H)) +
Sc(R(H),SR(H)),5H)

Separator size:/n
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Tech.



Update on the Separator Tree

* Sc(H,6H) =
SC(SC(L(H), 6L(H)) +
Sc(R(H),SR(H)),5H)

Separator size:/n
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Update on the Separator Tree

* Sc(H,6H) =
SC(SC(L(H), 6L(H)) +
Sc(R(H),SR(H)),5H)

Separator size:/n
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Update time

* Theorem: Modifying k edges
costs only 0(vVnk) time

Separator size:/n
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Update time

* Corollary: Modifying 1 edges
costs 0(x/n) time

Separator size:/n

OOOOOOOOOOOOOOOO




Update time

* Corollary: Moditying n edges
costs 0(n) time

Separator size:/n

OOOOOOOOOOOOOOOO




Application: Planar mincost flow

* Theorem [DGGLPSY' 21]: Let G be a planar graph with n edges.
Assume all demands, costs and capacities are bounded by M. 3
Algorithm computes a minimum cost flow In

0(nlog®® nlogM) time.
* Interior point method: y/n/k batches of k updates each

* Dynamic electric flow: k updates in Vnk time
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Dynamic Laplacian on General Graphs

(1) Update(e, ry€"): Change the resistance of e to rg®"

(2) Query(v): Output the potential of any vertex v in the units — t
electrical flow

What is the potential of A?




Graph Laplacian — Random Walks

* [Doyle-Snell '84] Unit electrical flow form sto tis

the expected trajectory of a random walk

from s to t, with cancellations, w.r.t. to the edge
conductances.

* Flow fe on edge e = uv: Erand Walk[# of uv —
# of vu]

* Potential ¢, of vertex v:

Pr |[sis visited before t]
r.w.fromv

Georgia
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schur Complement — Equivalent Electric
Network

* Let C be a subset of vertices. Suppose we only care about
energies of edges in C.

1/3
1 1/3

.
173 €

* Sc(G, C) preserves the energies on edges between vertices in C



schur Complement — Compressed Random
Walk

* [t a random walk goes outside, take it back with the correct
probability distribution over vertices in C

¢ Sc(G,C) =
Mo<j<k W, () G+1)

i deg(u®)
u(O)’u(l)EC,V15i<1,u(i)$C O<]<k g( )

(Sum over all random walks from C to C whose interior is disjoint
from C)
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schur Complement: Static Approximation

* [DGGP "19]Theorem: Let C be a subset of vertices. For each edge
uv = e € E, repeat p = 0(e™%) times:

1. Sample a random walk from u until it hits C at some w.
2. Sample a random walk from v until it hits C at some z.

3. Connect the random walks above by the edge uv into one
random walk W.

4. Add an edge between wz with resistance p Yeew Ie to H

Then H is an e-approximation of Sc(G, C)
Georgia
Edge energies are preserved upto (1% €) Tech






Sample random walk: Morris walk

* Need: First k distinct vertices visited and length of walk in between

* Repeat: Given the visited vertex, find (sample) the next new vertex

5. Georgia
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Sample random walk: Morris walk

* Given the visited vertex, find (sample) the next new vertex

States: U U N(U)

Exit states: N(U)

Non exit states: U

Goal: Sample the next exit state

exit

Gr &




Sample random walk: Morris walk

* Given the visited vertex, find (sample) the next new vertex

O

exit

Electric current on e

= expected trajectory on e
= Pr|e is the last edge before exit]

Laplacian solver V

¢ 5. Georgia
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Sample random walk: Morris walk

* Given the visited vertex, sample the next new vertex and length
* Dynamic programming: Can only get expectation of length

Solution: Morris counter [Morris’ 1978]
The counter stores x = logn

Increase Counter: x « x + 1 with probability 1/2*

Property: By increasing the counter 2* times, x is
Increased by 1 in expectation.

Georgia
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Sample random walk: Morris walk

* Given the visited vertex, sample the next new vertex and length

Solution: Morris counter [Morris’ 1978]
The counter stores x = log;,.en + 1
Increase Counter: with probability 1/(1 + €)*

Theorem: i((l +e)* —1)iswhp. (1+€)-
approximation of true counter

= Georgia
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Sample random walk: Morris walk

* Given the visited vertex, sample the next new vertex and length

exit

Current Morris counter value: x
States: VXZ

Exit states: N(U)x{x} and Vx{= x + 1}
Non exit states: UX{x}
Goal: Sample the next exit state

sy Georgia
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Sample random walk: Morris walk

* Given the visited vertex, sample the next new vertex and length

—

—

—

_

S
Q — Exit Q
Exit - (Morris
(new | | Counter++)
vertex)) %

=
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Dynamic Schur Complement — Step 1

ﬁ?;g{l@?na SAOEES P RINCRSoF QR ARGE, SESIC AL e JERFEER E E,
6'me§(e %) times:

1. AR RO Pk S @TUtil it hits C at some w.
§ AarARIO MO HPWRIK HHSHG #1Uhtil it hits C at some z.

@BHH@@\}H@ FaRdsm walks aBave By the edge B IAts 8Re
raﬂaem walk W = (uv).

4. AHH 3R edge BEtWEER W2 \With eurignte Q. to H

Then H is an e-approximation of Sc(G, C)
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Application: Maxflow

* Glven
* Graph G = (V,E)
* Capacities of the edges
« Demand or supply of the source and sink supply: ©

* Q: Can we fulfill the demand/supply by a flow not exceeding the
capacities?

Gr Georgia
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Pseudocode of Maxflow by IPM+Electric flow

while(more than 1 unit of flow remaining)
Determine edge resistances r by flows and capacities
Calculate electric flow fromstot by r
Route 1/+/m fraction of flow from s to t
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Electric flow to accelerate maxtlow

* Theorem [GLP" 21]: Let G be a graph with m edges. Assume all
demands and capacities are bounded by M. 3 Algorithm
computes a minimum cost flow In

0(m3/271/328 10g%) mlog M) time.

» Improve over the 20-year-old 0(m3/210g®Y mlog M) result by
|Goldberg-Rao’ 98]
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Capacity Releasing Diffusion [WFHMR™ 17]

* Flow diffusion: a process that
spreads mass among vertices
by sending mass along edges
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Thank you!
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